最新消息:请大家多多支持

Recommendation system Real World Projects using Python

其他教程 dsgsd 130浏览 0评论

MP4 | Video: h264, 1280×720 | Audio: AAC, 44.1 KHz
Language: English | Size: 2.07 GB | Duration: 4h 27m

Real World Projects on recommendation systems with data science, machine learning and AI techniques..

What you’ll learn
Learn How to tackle Real world Problems..
Learn Collaborative based filtering
Learn how to use Correlation for Recommending similar Movies or similar books
Learn Content based recommendation system
Learn how to use different Techniques like Average Weighted , Hybrid Model etc..
Learn different types of Recommender Systems

Requirements
For earlier sections, just know some basic arithmetic
Be proficient in Python ..
Description
Believe it or not, almost all online platforms today uses recommender systems in some way or another.

So What does “recommender systems” stand for and why are they so useful?

Let’s look at the top 3 websites on the Internet : Google, YouTube, and Netfix

Google: Search results

Thats why Google is the most successful technology company today.

YouTube: Video dashboard

I’m sure I’m not the only one who’s accidentally spent hours on YouTube when I had more important things to do! Just how do they convince you to do that?

That’s right this is all on account of Recommender systems!

Netflix: So powerful in terms of recommending right movies to users according to the behaviour of users !

Recommender systems aim to predict users’ interests and recommend product items that quite likely are interesting for them.

This course gives you a thorough understanding of the Recommendation systems.

In this course, we will cover

Use cases of recommender systems.

Average weighted Technique Recommender System

Popularity-based Recommender System

Hybrid Model based on Average weighted & Popularity

Collaborative filtering.

Content based filtering

and much, much more!

Not only this, you will also work on two very exciting projects.

Instructor Support – Quick Instructor Support for any query within 2-3 hours

All the resources used in this course will be shared with you via Google Drive Link

How to make most from the course ?

Check out the lecture “Utilize This Golden Oppurtunity , QnA Section !”

Who this course is for
Data Scientists
Data Analysts
Machine learning Engineer
Anyone who wants to deep dive into data science.
Students and Professionals who want to gain Hands-on..


Password/解压密码www.tbtos.com

资源下载此资源仅限VIP下载,请先

转载请注明:0daytown » Recommendation system Real World Projects using Python

您必须 登录 才能发表评论!