最新消息:请大家多多支持

Coursera – Machine Learning Engineering for Production (MLOps) Specialization

其他教程 dsgsd 96浏览 0评论

Last updated 6/2023
MP4 | Video: h264, 1280×720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 168 Lessons (18h 31m) | Size: 2 GB

Become a Machine Learning expert. Productionize your machine learning knowledge and expand your production engineering capabilities.

WHAT YOU WILL LEARN
Design an ML production system end-to-end: project scoping, data needs, modeling strategies, and deployment requirements.

Establish a model baseline, address concept drift, and prototype how to develop, deploy, and continuously improve a productionized ML application.

Build data pipelines by gathering, cleaning, and validating datasets. Establish data lifecycle by using data lineage and provenance metadata tools.

Apply best practices and progressive delivery techniques to maintain and monitor a continuously operating production system.

SKILLS YOU WILL GAIN
Managing Machine Learning Production Systems
Deployment Pipelines
Model Pipelines
Data Pipelines
Machine Learning Engineering for Production
Human-level Performance (HLP)
Concept Drift
Model baseline
Project Scoping and Design
ML Deployment Challenges
ML Metadata
Convolutional Neural Network

About this Specialization
62,070 recent views
Understanding machine learning and deep learning concepts is essential, but if you’re looking to build an effective AI career, you need production engineering capabilities as well.

Effectively deploying machine learning models requires competencies more commonly found in technical fields such as software engineering and DevOps. Machine learning engineering for production combines the foundational concepts of machine learning with the functional expertise of modern software development and engineering roles.

The Machine Learning Engineering for Production (MLOps) Specialization covers how to conceptualize, build, and maintain integrated systems that continuously operate in production. In striking contrast with standard machine learning modeling, production systems need to handle relentless evolving data. Moreover, the production system must run non-stop at the minimum cost while producing the maximum performance. In this Specialization, you will learn how to use well-established tools and methodologies for doing all of this effectively and efficiently.

In this Specialization, you will become familiar with the capabilities, challenges, and consequences of machine learning engineering in production. By the end, you will be ready to employ your new production-ready skills to participate in the development of leading-edge AI technology to solve real-world problems.

Applied Learning Project
By the end, you’ll be ready to

• Design an ML production system end-to-end: project scoping, data needs, modeling strategies, and deployment requirements

• Establish a model baseline, address concept drift, and prototype how to develop, deploy, and continuously improve a productionized ML application

• Build data pipelines by gathering, cleaning, and validating datasets

• Implement feature engineering, transformation, and selection with TensorFlow Extended

• Establish data lifecycle by leveraging data lineage and provenance metadata tools and follow data evolution with enterprise data schemas

• Apply techniques to manage modeling resources and best serve offline/online inference requests

• Use analytics to address model fairness, explainability issues, and mitigate bottlenecks

• Deliver deployment pipelines for model serving that require different infrastructures

• Apply best practices and progressive delivery techniques to maintain a continuously operating production system


Password/解压密码www.tbtos.com

资源下载此资源仅限VIP下载,请先

转载请注明:0daytown » Coursera – Machine Learning Engineering for Production (MLOps) Specialization

您必须 登录 才能发表评论!