Feature engineering is essential to applied machine learning, but using domain knowledge to strengthen your predictive models can be difficult and expensive. To help fill the information gap on feature engineering, this complete hands-on guide teaches beginning-to-intermediate data scientists how to work with this widely practiced but little discussed topic.
Author Alice Zheng explains common practices and mathematical principles to help engineer features for new data and tasks. If you understand basic machine learning concepts like supervised and unsupervised learning, you’re ready to get started. Not only will you learn how to implement feature engineering in a systematic and principled way, you’ll also learn how to practice better data science.
Mastering Feature Engineering Principles and Techniques for Data Scientists-P2P
English | ISBN: 1491953241 | 2016 | PDF/EPUB/MOBI | 69 pages | 4 MB/5 MB/11 MB
Download uploaded
http://uploaded.net/file/eoz54eku/1491953241.pdf
Download nitroflare
http://nitroflare.com/view/5385F456BDB1263/1491953241.pdf
Download 城通网盘
http://page88.ctfile.com/fs/T7B153261159
Download 百度云
http://pan.baidu.com/s/1o8Radlg
转载请注明:0daytown » Mastering Feature Engineering Principles and Techniques for Data Scientists-P2P