最新消息:请大家多多支持

Python Bootcamp: Data Exploration and Matplotlib Plots

其他教程 dsgsd 208浏览 0评论


Genre: eLearning | MP4 | Video: h264, 1280×720 | Audio: AAC, 44.1 KHz
Language: English | Size: 678 MB | Duration: 2h 3m
Python Data exploration , Essential methods and attributes, Matplotlib plots/graphs/customizations/style sheets

What you’ll learn
Initial Analysis of the data using methods or attributes like: Shape, info( ), describe( )etc.
Sort values, unique values, index, mean, reset index, rename column
Data type change for a column/series, Subsetting
Logical OR, Logical AND, isin( ), not isin( )
String methods: copy( ), upper( ), lower( ), title( ), replace( ), split( )
Handling of missing values: isna( ), dropna( ), isna( )
Summary statistics of a numerical column: describe( ), std( ), var( ), boxplot( )
Linspace( )
Slicing using loc and iloc
groupby, query( ), division of values of a column/series by values in another column/series
Matplotlib: plotting basic graphs, customizations (marker size, line width, xlabel, ylabel, title)
Subplopts, subplots with same Y-axis, subplots with same X-axis
Matplotlib: histogram, bargraph, boxplot, scatter plot
Matplotlib: style sheets, saving plot/figures

Description
This course will help you to learn and understand Data exploration in python and basic plots of Matplotlib for better visualization of the dataset.

The python version used in this course is 3.8.5

This course is designed for students who have zero to basic knowledge of Python. All the methods, attributes, plots, graphs, customizations are explained from scratch.

The first part of the course mainly focuses on data analysis and will help you to understand functions/methods that you may need to use to explore your dataset in its entirety.

Further, some part focuses on cleansing as well like handling duplicate and missing values.

The structure for the Data exploration (first part) is:-

Initial Analysis of the data using methods or attributes like: Shape, info( ), describe( )etc.

Sort values, unique values, index, mean, reset index, rename column

Data type change for a column/series, Subsetting

Logical OR, Logical AND, isin( ), not isin( )

String methods: copy( ), upper( ), lower( ), title( ), replace( ), split( )

Handling of missing values: isna( ), dropna( ), isna( )

Summary statistics of a numerical column: describe( ), std( ), var( ), boxplot( )

Linspace( )

Slicing using loc and iloc

groupby, query( ), division of values of a column/series by values in another column/series

The second part mainly focuses on plots/graphs of Matplotlib:-

Matplotlib: plotting basic graphs, customizations (marker size, line width, xlabel, ylabel, title)

Subplopts, subplots with same Y-axis, subplots with same X-axis

Matplotlib: histogram, bargraph, boxplot, scatter plot

Matplotlib: style sheets, saving plot/figures


Password/解压密码www.tbtos.com

Download rapidgator
https://rapidgator.net/file/357ead4181e66b651fea92fc0753a2cb/0912_2.zip.html

Download nitroflare
https://nitro.download/view/076931F33BA5705/0912_2.zip

资源下载此资源仅限VIP下载,请先

转载请注明:0daytown » Python Bootcamp: Data Exploration and Matplotlib Plots

您必须 登录 才能发表评论!