Generative models are gaining a lot of popularity among data scientists, mainly because they facilitate the building of AI systems that consume raw data from a source and automatically build an understanding of it.
Unlike supervised learning methods, generative models do not require labeling data, which makes for an interesting system to use. This video will help you build and analyze deep learning models and apply them to real-world problems. It will help readers develop intelligent and creative application from a wide variety of datasets, mainly focusing on visuals or images.
The video begins with the basics of generative models, as you get to know the theory behind Generative Adversarial Networks and its building blocks. In this video, you’ll see how to overcome the problem of text-to-image synthesis with GANs, using libraries such as Tensorflow, Keras, and PyTorch.
Download rapidgator
https://rg.to/file/fd471bc863ff83398e1c88786fe94898/Learning_Generative_Adversarial_Networks_%5BVideo%5D.part1.rar.html
https://rg.to/file/779791ad1cedd9ccd051dea42477edef/Learning_Generative_Adversarial_Networks_%5BVideo%5D.part2.rar.html
Download nitroflare
http://nitroflare.com/view/BAE07CB95019DC3/Learning_Generative_Adversarial_Networks__Video_.part1.rar
http://nitroflare.com/view/71C8D12F55A4F48/Learning_Generative_Adversarial_Networks__Video_.part2.rar
Download 百度云