最新消息:请大家多多支持

Investigative Data Analytics: Python vs. R

其他教程 dsgsd 56浏览 0评论

Published 3/2024
Created by Penny Li, CPA Illinois
MP4 | Video: h264, 1280×720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 16 Lectures ( 2h 34m ) | Size: 1.91 GB

Comparatively learn investigative data analytics in Python and R

What you’ll learn:
Use Pivot Table in Python and R to manipulate data
Use Benford’s Law to detect anomalies in Python and R
Use Heatmap in Python and R to identify correlations between data columns
Cluster datasets into subgroups using Kmeans in Python and R
Use Image to Text to extract text data from images using Python and R
Use Histogram and Word Cloud in Python and R to analyze text data
Use machine learning decision trees to identify fraudulent data points in Python
Use Plotly in Python to show interactive data structures

Requirements:
No programming experience needed. All you need to do is follow along.

Description:
This immersive course delves into Python and R for investigative data analytics, spotlighting techniques such as heatmap generation, clustering algorithms, decision tree analysis, and text analytics. By comparing Python’s seaborn and matplotlib with R’s ggplot2, students will learn to craft detailed heatmaps and unveiling intricate data patterns. Clustering sessions will demonstrate segmenting techniques using Python’s scikit-learn and R’s cluster packages, applying K-means to dissect data into significant clusters for insightful analysis in areas such as market research and customer segmentation.In the decision tree segment, the course contrasts Python’s scikit-learn with R’s party package, teaching how to build models that illuminate the path from data to decisions. The exploration extends into text analytics, employing Python’s plotly express for dynamic visualizations and both languages’ capabilities to create expressive word clouds, enabling students to mine and interpret textual data for trend spotting.Tailored for both budding and seasoned data analysts and researchers, this course interweaves theoretical concepts with substantial hands-on practice. Learners will emerge with a profound understanding of which programming language, Python or R, best fits various data analytics challenges. By fostering a practical learning environment, the course underscores real-world applications, ensuring participants gain the proficiency needed to navigate the complexities of data analytics confidently. This dynamic curriculum is poised to enhance analytical skills, preparing learners for the demands of data-driven decision-making in their professional and academic careers.


Password/解压密码www.tbtos.com

资源下载此资源仅限VIP下载,请先

转载请注明:0daytown » Investigative Data Analytics: Python vs. R

您必须 登录 才能发表评论!