最新消息:请大家多多支持

Advanced Machine Learning with scikit-learn Training Video

其他教程 dsgsd 199浏览 0评论


Advanced Machine Learning with scikit-learn Training Video

SKU: 02193 | .MP4, AVC, 1000 kbps, 1280×720 | English, AAC, 64 kbps, 2 Ch | 4 hours | 766 MB

Instructor: Andreas C. Mueller

In this Advanced Machine Learning with scikit-learn training course, expert author Andreas Mueller will teach you how to choose and evaluate machine learning models. This course is designed for users that already have experience with Python. 

You will start by learning about model complexity, overfitting and underfitting. From there, Andreas will teach you about pipelines, advanced metrics and imbalanced classes, and model selection for unsupervised learning. This video tutorial also covers dealing with categorical variables, dictionaries, and incomplete data, and how to handle text data. Finally, you will learn about out of core learning, including the sci-learn interface for out of core learning and kernel approximations for large-scale non-linear classification.

Once you have completed this computer based training course, you will have learned everything you need to know to be able to choose and evaluate machine learning models. Working files are included, allowing you to follow along with the author throughout the lessons.

More Info
Advanced Machine Learning with scikit-learn Training Video [Repost]Advanced Machine Learning with scikit-learn Training Video [Repost]
Download uploaded
http://uploaded.net/file/tony98mh/AdvancedMachineLearning.part1.rar
http://uploaded.net/file/0636hb4t/AdvancedMachineLearning.part2.rar
http://uploaded.net/file/1g4z1zxo/AdvancedMachineLearning.part3.rar
Download nitroflare
http://nitroflare.com/view/E96E3BBC4AFF908/AdvancedMachineLearning.part1.rar
http://nitroflare.com/view/AFE52F27034CD86/AdvancedMachineLearning.part2.rar
http://nitroflare.com/view/A9F3839143C76A4/AdvancedMachineLearning.part3.rar
Download 百度云

你是VIP 1个月(1 month)赞助会员,

资源下载此资源仅限VIP下载,请先

转载请注明:0daytown » Advanced Machine Learning with scikit-learn Training Video

您必须 登录 才能发表评论!